jueves, 17 de marzo de 2011

MÉTODO GRÁFICO

El método gráfico se utiliza para la solución de problemas de PL, representando geométricamente a las restricciones, condiciones técnicas y el objetivo. El modelo se puede resolver en forma gráfica si sólo tiene dos variables. Para modelos con tres o más variables, el método gráfico es impráctico o imposible.

En un problema de programación lineal intervienen:
·         La función f(x,y) = ax + by + c llamada función objetivo y que es necesario optimizar. En esa expresión x e y son las variables de decisión, mientras que a, b y c son constantes.
·         Las restricciones que deben ser inecuaciones lineales. Su número depende del problema en cuestión. El carácter de desigualdad viene impuesto por las limitaciones, disponibilidades o necesidades. Tanto si se trata de maximizar como de minimizar, las desigualdades pueden darse en cualquiera de los dos sentidos.
·         Al conjunto de valores de x e y que verifican todas y cada una de las restricciones se lo denomina conjunto (o región) factible. Todo punto de ese conjunto puede ser solución del problema; todo punto no perteneciente a ese conjunto no puede ser solución. La solución óptima del problema será un par de valores (x0, y0) del conjunto factible que haga que f(x,y) tome el valor máximo o mínimo.

REGIÓN FACTIBLE
La solución de un problema de programación lineal, en el supuesto de que exista, debe estar en la región determinada por las distintas desigualdades. Esta recibe el nombre de región factible, y puede estar o no acotada.
La región factible incluye o no los lados y los vértices, según que las desigualdades sean en sentido amplio.
Si la región factible está acotada, su representación gráfica es un polígono convexo con un número de lados menor o igual que el número de restricciones.
El procedimiento para determinar la región factible es el siguiente:
1) Se resuelve cada inecuación por separado, es decir, se encuentra el semiplano de soluciones de cada una de las inecuaciones.
  • Se dibuja la recta asociada a la inecuación. Esta recta divide al plano en dos regiones o semiplanos
  • Para averiguar cuál es la región válida, el procedimiento práctico consiste en elegir un punto, por ejemplo, el (0,0) si la recta no pasa por el origen, y comprobar si las coordenadas satisfacen o no la inecuación. Si lo hacen, la región en la que está ese punto es aquella cuyos puntos verifican la inecuación; en caso contrario, la región válida es la otra.
2) La región factible está formada por la intersección o región común de las soluciones de todas las inecuaciones.
Como sucede con los sistemas de ecuaciones lineales, los sistemas de inecuaciones lineales pueden presentar varias opciones respecto a sus soluciones: puede no existir solución, en el caso de que exista el conjunto solución puede ser acotado o no.


CÓMO RESOLVER UN PROBLEMA MEDIANTE EL MÉTODO GRÁFICO


 Los pasos necesarios para realizar el método son nueve:
1. Graficar las soluciones factibles, o el espacio de soluciones (factible), que satisfagan todas las restricciones en forma simultánea.
2. Las restricciones de no negatividad Xi>= 0 confían todos los valores posibles.
3. El espacio encerrado por las restricciones restantes se determinan sustituyendo en primer término <= por (=) para cada restricción, con lo cual se produce la ecuación de una línea recta.
4. Trazar cada línea recta en el plano y la región en cual se encuentra cada restricción cuando se considera la desigualdad lo indica la dirección de la flecha situada sobre la línea recta asociada.
5. Cada punto contenido o situado en la frontera del espacio de soluciones satisfacen todas las restricciones y por consiguiente, representa un punto factible.
6. Aunque hay un número infinito de puntos factibles en el espacio de soluciones, la solución óptima puede determinarse al observar la dirección en la cual aumenta la función objetivo.
7. Las líneas paralelas que representan la función objetivo se trazan mediante la asignación de valores arbitrarios a fin de determinar la pendiente y la dirección en la cual crece o decrece el valor de la función objetivo.

No hay comentarios:

Publicar un comentario